80 research outputs found

    Genetics of Tinnitus: Time to Biobank Phantom Sounds

    Get PDF
    Tinnitus is a common phantom sensation resulting most often from sensory deprivation, and for which little knowledge on the molecular mechanisms exists. While the existing evidence for a genetic influence on the condition has been until now sparse and underpowered, recent data suggest that specific forms of tinnitus have a strong genetic component revealing that not all tinnitus percepts are alike, at least in how they are genetically driven. These new findings pave the way for a better understanding on how phantom sensations are molecularly driven and call for international biobanking efforts

    Rare Coding Variants in Patients with Non-Syndromic Vestibular Dysfunction

    Get PDF
    The following are available online at https://www.mdpi.com/article/ 10.3390/genes14040831/s1A.A.M.S. received a scholarship from the Philippine Council for Health and Research Development of the Department of Science and Technology (PCHRD-DOST) under the Research Enrichment (Sandwich) Grant of the Accelerated Science and Technology Human Resource Devel- opment Program. O.A.K. was supported by the US National Institutes of Health (NIH)—National Institute on Deafness and Other Communication Disorders (NIDCD) grant T32 DC012280 (to Sue C. Kinnamon and Herman A. Jenkins). This work was supported by the NIH through the NIDCD grants R01 DC019642 (to R.L.P.S.-C. and Ivana V. Yang) and R01 DC013912 (to S.P.G.); and the National Insti- tute of Arthritis and Musculoskeletal and Skin Diseases grant R01 AR068292 (to N.H.-M.). Funding was also provided by Junta de Andalucia, grant Retos en Investigacion PY20_00303 (to J.A.L.-E.).Vertigo due to vestibular dysfunction is rare in children. The elucidation of its etiology will improve clinical management and the quality of life of patients. Genes for vestibular dysfunction were previously identified in patients with both hearing loss and vertigo. This study aimed to identify rare, coding variants in children with peripheral vertigo but no hearing loss, and in patients with potentially overlapping phenotypes, namely, Meniere’s disease or idiopathic scoliosis. Rare variants were selected from the exome sequence data of 5 American children with vertigo, 226 Spanish patients with Meniere’s disease, and 38 European–American probands with scoliosis. In children with vertigo, 17 variants were found in 15 genes involved in migraine, musculoskeletal phenotypes, and vestibular development. Three genes, OTOP1, HMX3, and LAMA2, have knockout mouse models for vestibular dysfunction. Moreover, HMX3 and LAMA2 were expressed in human vestibular tissues. Rare variants within ECM1, OTOP1, and OTOP2 were each identified in three adult patients with Meniere’s disease. Additionally, an OTOP1 variant was identified in 11 adolescents with lateral semicircular canal asymmetry, 10 of whom have scoliosis. We hypothesize that peripheral vestibular dysfunction in children may be due to multiple rare variants within genes that are involved in the inner ear structure, migraine, and musculoskeletal disease.Philippine Council for Health and Research Development of the Department of Science and Technology (PCHRD-DOST) under the Research Enrichment (Sandwich) Grant of the Accelerated Science and Technology Human Resource Development ProgramUS National Institutes of Health (NIH)-National Institute on Deafness and Other Communication Disorders (NIDCD) T32 DC012280NIH through the NIDCD R01 DC019642, R01 DC013912United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Arthritis & Musculoskeletal & Skin Diseases (NIAMS) R01 AR068292Junta de Andalucia PY20_0030

    Single-cell immune profiling of Meniere Disease patients

    Get PDF
    This work was supported by B-CTS-68-UGR20 Grant by FEDER Funds, PI17/1644 and PI20-1126 grants from ISCIII by FEDER Funds from the EU, CLINMON-2 from the Meniere's Society UK, and Impact Data Science (IMP0001) . MF is funded by F18/00228 grant from ISCIII by FEDER Funds from the EU. AEB is funded by the EU's Horizon 2020 Research and Innovation Programme, Grant Agreement Number 848261. LF is funded by CD20/0153 grant from ISCIII by FEDER Funds from the EU. Funding for open access charge: Universidad de Granada/CBUA.Background: Meniere Disease (MD) is an inner ear syndrome, characterized by episodes of vertigo, tinnitus and fluctuating sensorineural hearing loss. The pathological mechanism leading to sporadic MD is still poorly understood, however an allergic inflammatory response seems to be involved in some patients with MD. Objective: Decipher an immune signature associated with the syndrome. Methods: We performed mass cytometry immune profiling on peripheral blood from MD patients and controls. We analyzed differences in state and differences in abundance of the different cellular subsets. IgE levels were quantified through ELISA on supernatant of cultured whole blood. Results: We have identified two clusters of individuals according to the single cell cytokine profile. These clusters presented differences in IgE levels, immune cell population abundance, including a reduction of CD56dim NKcells, and changes in cytokine expression with a different response to bacterial and fungal antigens. Conclusion: Our results support a systemic inflammatory response in some MD patients that show a type 2 response with allergic phenotype, which could benefit from personalized IL-4 blockers.FEDER Funds B-CTS-68-UGR20, B-CTS-68-UGR20Instituto de Salud Carlos III Spanish Government PI17/1644, PI20-1126, CD20/0153, 848261EUMeniere's Society UKImpact Data Science F18/00228Horizon 2020 IMP0001Universidad de Granada/CBU

    Motion sickness diagnostic criteria: Consensus document of the classification committee of the Bárány society

    Get PDF
    We present diagnostic criteria for motion sickness, visually induced motion sickness (VIMS), motion sickness disorder (MSD), and VIMS disorder (VIMSD) to be included in the International Classification of Vestibular Disorders. Motion sickness and VIMS are normal physiological responses that can be elicited in almost all people, but susceptibility and severity can be high enough for the response to be considered a disorder in some cases. This report provides guidelines for evaluating signs and symptoms caused by physical motion or visual motion and for diagnosing an individual as having a response that is severe enough to constitute a disorder. The diagnostic criteria for motion sickness and VIMS include adverse reactions elicited during exposure to physical motion or visual motion leading to observable signs or symptoms of greater than minimal severity in the following domains: nausea and/or gastrointestinal disturbance, thermoregulatory disruption, alterations in arousal, dizziness and/or vertigo, headache and/or ocular strain. These signs/symptoms occur during the motion exposure, build as the exposure is prolonged, and eventually stop after the motion ends. Motion sickness disorder and VIMSD are diagnosed when recurrent episodes of motion sickness or VIMS are reliably triggered by the same or similar stimuli, severity does not significantly decrease after repeated exposure, and signs/symptoms lead to activity modification, avoidance behavior, or aversive emotional responses. Motion sickness/MSD and VIMS/VIMSD can occur separately or together. Severity of symptoms in reaction to physical motion or visual motion stimuli varies widely and can change within an individual due to aging, adaptation, and comorbid disorders. We discuss the main methods for measuring motion sickness symptoms, the situations conducive to motion sickness and VIMS, and the individual traits associated with increased susceptibility. These additional considerations will improve diagnosis by fostering accurate measurement and understanding of the situational and personal factors associated with MSD and VIMSD

    Generation and characterization of the human iPSC line PBMC1-iPS4F1 from adult peripheral blood mononuclear cells

    Get PDF
    AbstractHere we describe the generation and characterization of the human induced pluripotent stem cell (iPSC) line PBMC1-iPS4F1 from peripheral blood mononuclear cells from a healthy female with Spanish background. We used heat sensitive, non-integrative Sendai viruses containing the reprogramming factors Oct3/4, Sox2, Klf4 and c-Myc, whose expression was silenced in the established iPSC line. Characterization of the PBMC1-iPS4F1 cell line included analysis of typical pluripotency-associated factors at mRNA and protein level, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation studies

    High Prevalence of Systemic Autoimmune Diseases in Patients with Menière's Disease

    Get PDF
    BACKGROUND: Autoimmunity appears to be associated with the pathophysiology of Meniere's disease (MD), an inner ear disorder characterized by episodes of vertigo associated with hearing loss and tinnitus. However, the prevalence of autoimmune diseases (AD) in patients with MD has not been studied in individuals with uni or bilateral sensorineural hearing loss (SNHL). METHODS AND FINDINGS: We estimated the prevalence of AD in 690 outpatients with MD with uni or bilateral SNHL from otoneurology clinics at six tertiary referral hospitals by using clinica criteria and an immune panel (lymphocyte populations, antinuclear antibodies, C3, C4 and proinflammatory cytokines TNFα, INFγ). The observed prevalence of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and ankylosing spondylitis (AS) was higher than expected for the general population (1.39 for RA, 0.87 for SLE and 0.70 for AS, respectively). Systemic AD were more frequently observed in patients with MD and diagnostic criteria for migraine than cases with MD and tension-type headache (p = 0.007). There were clinical differences between patients with uni or bilateral SNHL, but no differences were found in the immune profile. Multiple linear regression showed that changes in lymphocytes subpopulations were associated with hearing loss and persistence of vertigo, suggesting a role for the immune response in MD. CONCLUSIONS: Despite some limitations, MD displays an elevated prevalence of systemic AD such as RA, SLE and AS. This finding, which suggests an autoimmune background in a subset of patients with MD, has important implications for the treatment of MD

    Using coding and non-coding rare variants to target candidate genes in patients with severe tinnitus

    Get PDF
    Tinnitus is the phantom percept of an internal non-verbal set of noises and tones. It is reported by 15% of the population and it is usually associated with hearing and/or brain disorders. The role of structural variants (SVs) in coding and non-coding regions has not been investigated in patients with severe tinnitus. In this study, we performed whole-genome sequencing in 97 unrelated Swedish individuals with chronic tinnitus (TIGER cohort). Rare single nucleotide variants (SNV), large structural variants (LSV), and copy number variations (CNV) were retrieved to perform a gene enrichment analysis in TIGER and in a subgroup of patients with severe tinnitus (SEVTIN, n = 34), according to the tinnitus handicap inventory (THI) scores. An independent exome sequencing dataset of 147 Swedish tinnitus patients was used as a replication cohort (JAGUAR cohort) and population-specific datasets from Sweden (SweGen) and Non-Finish Europeans (NFE) from gnomAD were used as control groups. SEVTIN patients showed a higher prevalence of hyperacusis, hearing loss, and anxiety when they were compared to individuals in the TIGER cohort. We found an enrichment of rare missense variants in 6 and 8 high-constraint genes in SEVTIN and TIGER cohorts, respectively. Of note, an enrichment of missense variants was found in the CACNA1E gene in both SEVTIN and TIGER. We replicated the burden of missense variants in 9 high-constrained genes in the JAGUAR cohort, including the gene NAV2, when data were compared with NFE. Moreover, LSVs in constrained regions overlapping CACNA1E, NAV2, and TMEM132D genes were observed in TIGER and SEVTIN.publishedVersio

    Burden of rare variants in synaptic genes in patients with severe tinnitus: An exome based extreme phenotype study

    Get PDF
    Background: tinnitus is a heterogeneous condition associated with audiological and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability, according to twins, adoptees and familial aggregation studies. The genetic contribution to severe tinnitus is unknown since large genomic studies include individuals with self-reported tinnitus and large heterogeneity in the phenotype. The aim of this study was to identify genes for severe tinnitus in patients with extreme phenotype. Methods: for this extreme phenotype study, we used three different cohorts with European ancestry (Spanish with Meniere disease (MD), Swedes tinnitus and European generalized epilepsy). In addition, four independent control datasets were also used for comparisons. Whole-exome sequencing was performed for the MD and epilepsy cohorts and whole-genome sequencing was carried out in Swedes with tinnitus. Findings: we found an enrichment of rare missense variants in 24 synaptic genes in a Spanish cohort, the most significant being PRUNE2, AKAP9, SORBS1, ITGAX, ANK2, KIF20B and TSC2 (p < 2E 04), when they were compared with reference datasets. This burden was replicated for ANK2 gene in a Swedish cohort with 97 tinnitus individuals, and in a subset of 34 Swedish patients with severe tinnitus for ANK2, AKAP9 and TSC2 genes (p < 2E 02). However, these associations were not significant in a third cohort of 701 generalized epilepsy individuals without tinnitus. Gene ontology (GO) and gene-set enrichment analyses revealed several pathways and biological processes involved in severe tinnitus, including membrane trafficking and cytoskeletal protein binding in neurons. Interpretation: a burden of rare variants in ANK2, AKAP9 and TSC2 is associated with severe tinnitus. ANK2, encodes a cytoskeleton scaffolding protein that coordinates the assembly of several proteins, drives axonal branching and influences connectivity in neurons

    Regulation of Fn14 Receptor and NF-κB Underlies Inflammation in Meniere’s Disease

    Get PDF
    Meniere’s disease (MD) is a rare disorder characterized by episodic vertigo, sensorineural hearing loss, tinnitus, and aural fullness. It is associated with a fluid imbalance between the secretion of endolymph in the cochlear duct and its reabsorption into the subarachnoid space, leading to an accumulation of endolymph in the inner ear. Epidemiological evidence, including familial aggregation, indicates a genetic contribution and a consistent association with autoimmune diseases (AD). We conducted a case–control study in two phases using an immune genotyping array in a total of 420 patients with bilateral MD and 1,630 controls. We have identified the first locus, at 6p21.33, suggesting an association with bilateral MD [meta-analysis leading signal rs4947296, OR = 2.089 (1.661–2.627); p = 1.39 × 10−09]. Gene expression profiles of homozygous genotype-selected peripheral blood mononuclear cells (PBMCs) demonstrated that this region is a trans-expression quantitative trait locus (eQTL) in PBMCs. Signaling analysis predicted several tumor necrosis factor-related pathways, the TWEAK/Fn14 pathway being the top candidate (p = 2.42 × 10−11). This pathway is involved in the modulation of inflammation in several human AD, including multiple sclerosis, systemic lupus erythematosus, or rheumatoid arthritis. In vitro studies with genotype-selected lymphoblastoid cells from patients with MD suggest that this trans-eQTL may regulate cellular proliferation in lymphoid cells through the TWEAK/Fn14 pathway by increasing the translation of NF-κB. Taken together; these findings suggest that the carriers of the risk genotype may develop an NF-κB-mediated inflammatory response in MD
    corecore